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Motivation

United States Air Force Damage Tolerance
Initiative
 Aircraft structural failures typically occurred from
fatigue cracks

* Develop a life-cycle management approach based
on crack growth

 Inspect and repair instead of time-based
replacement

« USAF improves fleet safety
« USAF improves operational readiness

« USAF saves millions of dollars in replacement
costs and downtime

Why not rotorcraft?
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Challenges & Objectives

* Rotorcraft OEM’s and operators must replace
expensive structure repeatedly

« DT offers improved safety at lower cost (USAF)
Challenges

* Rotorcraft structure experience more extreme
operating environments than most fixed-wing
aircraft

 Significant structural failures typically occur from
high-cycle fatigue

« The objectives of this research are

— Investigate the fatigue crack growth threshold test
methods

— Evaluate the applicability of using threshold data for
rotorcraft design
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Experimental Threshold Methods
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D6AC Steel Crack Growth Rate Data
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D6AC Steel Crack Growth Rate Data

Constant K., and R Load Reduction Data
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Description of Crack Closure Mechanisms

» Plasticity-induced crack closure
— Crack length
— Cycle count
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 Roughness-induced crack closure
— Crack length
— Material properties

 Environment-induced crack closure .
— Crack length
— Exposure time
— Material properties
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Evaluation Of Environmental-induced Crack Closure
At R =0.1in D6AC Steel, C(T) Specimen

Direction of crack growth

AK increasing AK decreasing

* Interpretation

— Threshold region appears darker in AK decreasing test

— As AK approaches 10 MPa m'2 in AK increasing test, fracture
surface lightens and crack growth rate is equivalent to high-R
“closure free” data

— Closure most likely roughness or environment
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Evaluation Of Environmental-induced
Crack Closure
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Verification of Environment-induced Crack Closure using
Constant AK data for 7.7 MPa m'2 in D6AC Steel

Compression precracking
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Comparison of Constant AK to Load Reduction
Data

Assumption:
Steady-state plasticity- and
roughness-induced crack closure
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Crack Closure Development in D6AC Steel

Kmax = 22 MPa m1/2

Constant AK = 4.5 MPa m /2

Constant AK = 7.7 MPa m /2
R = 0.1 Dry Air

[ R = 0.1 Lab. Air

- —— R =0.1 AK_; predicted

109 1

da/dN
(m/cycle)

- Plasticity,
Plasticity andRoughness and

. Roughness? Environment D6AC Steel
Plasticity? C(T), L-T
Room Temp.

4 5
AK (MPa m'?)

Plasticity model used is FASTRAN effective stress intensity ., . ;



Losing Sight of the Forest

That tree

/ IS on fire
¥ W -
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Challenges to Implementing Damage
Tolerance in Rotorcraft
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Summary of Threshold Observations in D6AC
Steel C(T) Specimens

Closure Mechanism Threshold Stress
Intensity (MPa m!?)
Closure-free 2.52
Plasticity 3.19 \
Roughness 4.82 >R =0.1
Environment 6.45 )

* Results from threshold test methods are highly
dependent on crack closure mechanisms

 Design and life prediction of high cycle fatigue structure
Is reliant on a full understanding of the threshold test
methods and laboratory environment
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Challenges Ahead

|dentify what thresholds are important for rotorcraft
damage tolerance.

Is designing to the fatigue crack growth threshold
any different than the endurance limit?

When does inspection for cracks become
affordable or prudent?

Does DT for rotorcraft improve safety?

How does one design for stable, inspectable crack
growth?
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